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Abstract. We present microscopic calculations of the chemical short-range order in amorph- 
ous alloys of two transition metals. Our approach is based on a model tight-binding Ham- 
iltonian and a thermodynamic variational approach founded on the Gibbs-Bogolyubov 
inequality and a hard-sphere Yukawa fluid as a reference system. The manifestation of 
chemical short-range order (CSRO) in structural properties is investigated. Its effect on the 
stability of transition metal amorphous alloys is also discussed in terms of heats of formation. 
The occurrence Of CSRO is then discussed in correlation with the electronic structure of these 
alloys. Using the Hellmann-Feynman theorem we show that the ordering energy that creates 
CSRO has two contributions. The first one is kinetic and is due to the modification of the 
density of the electronic states with CSRO. It is equivalent to the term which is classically 
calculated in the TB CPA GPM for which the atomic energy levels are independent of CSRO. 
The second contribution is an electrostatic one but is weaker than the first one due to the 
small charge transfer in those systems. We explain how CSRO is favoured when the Fermi 
level falls in a bonding states range created by the coupling between the states of the alloying 
partners. 

1. Introduction 

Since all the metallic glasses which are stable at room temperature are alloys, the state 
of mixture of the alloy components is an important parameter of the system. Very recent 
structural investigations have shown that, in fact, a completely random mixture is not 
attained, so that the chemical composition around the atoms of each alloying component 
is different from the average. For instance, the results for Ni40Ti60 [l] and Ni,Zr, -, (x = 
0.35,0.5,0.65) [2-4] as well as for Ni33Y65 [5] and Ni,Nb,_, (x = 0.36,0.62) [6,7] show 
a degree of chemical ordering (CSRO) which can vary either with the composition as in 
the case of Ni,Zr, -, or Ni,Nbl --x system or with the partner species as in the Ni,M1 -, 
series (M = Ti, Zr, Y, Nb). Unfortunately, experimental determinations of chemical 
ordering are not sufficient to get a complete understanding of this phenomenon and a 
microscopic theory of CSRO would be welcome. The widely used theory for studying 
electronic properties of substitutional disordered transition metal alloys is the coherent 
potential approximation (CPA). However in spite of its many desirable properties, the 
CPA is a single-site theory that cannot treat effects such as CSRO. Some significant 
advances of the general theory of substitutional disordered alloys have been made to 
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take into account CSRO. For example Gautier and co-workers [8] have proposed a 
generalised perturbation expansion about the energy of the random alloy calculated in 
CPA from which pair and cluster interactions are obtained. Robbins and Falicov [9] have 
also proposed to include CSRO explicitly in the calculation of the electronic spectrum of 
substitutional transition metal alloys, using the cluster Bethe lattice method. In the same 
way, a qualitative and quantitative description of CSRO has been proposed [10-11] for 
topologically disordered alloys, like amorphous or liquid alloys. In this approach, two 
distinct steps are required: (i) the determination of the concentration dependence of 
electronic properties like internal energy from a model tight-binding Hamiltonian [ 121 
and (ii) the calculation therefrom of the structural and thermodynamic properties using 
a thermodynamic variational technique found on the Gibbs-Bogolyubov inequality and 
ahard-sphere Yukawafluidas areference system [13,10]. Moreparticularly, our method 
alloys us to take into account CSRO and to show its effect on the properties of the 
amorphous alloys. Of course, the thermodynamic variational approach is strictly appli- 
cable only to liquid systems but for amorphous alloys, we will have to assume that their 
CSRO is essentially identical to that of a supercooled liquid alloy just above the glass 
transition temperature. 

In a first paper, [ 111 (hereafter referred as I) results concerning structural information 
about Ni40Ti60 and NixZrl-x amorphous alloys have been reported, showing that cal- 
culated and experimental Bhatia-Thornton partial structure factors are in good agree- 
ment. In the first part of this paper, we complete our structural determinations for other 
amorphous alloys for which experimental results are available. We also focus our 
attention on the thermodynamic excess functions that will allow us to discuss the stability 
of these phases. More particularly, we compare the calculated heats of formation with 
the available experimental ones. In the second part, all these results are thus used as a 
starting point to discuss the evolution of chemical ordering as a function of the alloying 
partners. The role of the traditional alloy chemical factors, chemical bonding and valence 
electron concentration, in establishing CSRO is presented: more particularly, we try to 
analyse qualitatively the microscopic origin of the ordering energy that creates CSRO. 
Using the Hellmann-Feynman theorem we show that the ordering energy that creates 
CSRO has two contributions. The first one is kinetic and is due to the modification of the 
density of the electronic states with CSRO. It is equivalent to the term which is classically 
calculated in the TB CPA GPM for which the atomic energy levels are independent Of CSRO. 
The second contribution is an electrostatic one but is weaker than the first due to the 
small charge transfer in those systems. We explain how CSRO is favoured when the Fermi 
level falls in a bonding states range created by the coupling between the states of the 
alloying partner. 

The paper is organised as follows: in 9 2 we present briefly the calculation of the 
electronic ground-state energy and the properties of the reference system. We present 
an application of our method to NixZrl-x and Ni,TM,_, (TM = Ti, Y, Nb) amorphous 
alloys in § 3. In 9 4 the microscopic origin of CSRO is discussed. 

2. Model 

In order to calculate the electronic ground-state energy of an alloy one can express the 
free energy as a function of the atomic coordinates, the equilibrium configuration is thus 
obtained by minimisation of the free energy. As total energies are easily calculated in a 
tight-binding approximation, this approach appears to be attractive for transition metal 



O n  the microscopic origin of chemical short-range order 9687 

alloys. However a straightforward minimisation of the free energy with respect to the 
atomic coordinates is, of course, out of the question. On the other hand, we might 
parametrise the structure in a simple way and minimise the free energy with respect to 
a small number of relevant parameters. This is precisely what is done in a thermodynamic 
variational technique based on the Gibbs-Bogolyubov inequality. According to this 
approach, the equilibrium configuration is thus calculated by minimising the variational 
expression [ lo]:  

F ( p i , p j , . .  . ) = 3 / 2 k B T + E , ( p i , p j , . . . ) -  T s r e d p i > p j j . . * )  (2.1) 

and the variational conditions are: 

) = 0  for all p k  , (2 .2)  

p i ,  p i .  , , Pk , . . being the parameters modelling the reference system; Sref (p i ,  pi ,  . . .) is 
the entropy of the reference system. 

At the level of a thermodynamic variational calculation, the crucial step is the 
selection of an appropriate reference system. For alloys with a nearly ideal mixing 
behaviour, a variational treatment with a mixture of hard spheres of different diameters 
as a reference system has met with considerable success [13,14] but such an approach is 
certainly unable to cope with ordering phenomena. Copestake et a1 [ 15,161 have shown 
that the structural manifestations of ordering in molten salts, liquid semiconductors and 
even in liquid metallic alloys may be modelled by a mixture of hard spheres having all the 
same diameter but opposite charges (however respecting the overall charge neutrality 
condition) and interacting through a Coulomb or screened Coulomb (Yukawa) poten- 
tial. In this system, the description of the atomic configuration requires three parameters 
which are the diameter of the hard sphere o, the strength of the ordering potential at 
hard contact E and a screening constant K. For such a reference system, an analytical 
solution of the mean spherical approximation is available [ 171 and very recently Pasture1 
et a1 [18] have shown that a thermodynamic variational approach to chemical short- 
range order may be based upon this reference system. In terms of the average and 
ordering potentials, the reference interactions are given by: 

f W  r < o  

(2.3b) 

Because of equation ( 2 . 3 ~ )  the three coupled integral equations of the mean spherical 
approximation (MSA) decouple into two independent equations. One with the closure 
conditions (to the Ornstein-Zernike equations) 

describes the fluctuations in the mean number density and is identical to the Percus- 
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Yevick equations for hard spheres, hence we know its analytical solution [19]. The 
second, with the closure conditions: 

hcc(r) = 0 r < U ( 2 . 5 ~ )  

Ccc(r) = EO exp( - K ( r  - o)/rkBT r > o  (2.5b) 

describes the local fluctuations in the compositions. Its analytical solution has been given 
by Waisman [17]. Within this reference system, the variational conditions given in 
equation (2.2) become: 

with the variational upper bound to the exact free energy 

Explicit expressions for the HS and the ordering contributions to the entropy (SHS and 
&rd) are given in references [ 11, 181. 

Let us turn back to the calculation of the electronic ground-state energy &(U, E ,  K )  
for a given configuration. The total energy can be written as the sum of two terms, 
namely: 

Er = &ep + Ebond (2.8) 

where the labels imply that the first contribution is repulsive and the second attractive, 
stemming from the quantum-mechanical bonding between the atoms. As we are inter- 
ested in the variations of total energy with CSRO, we keep only the &,nd contribution in 
which the interionic Coulomb interactions have been absorbed. Within these conditions, 
the tight-binding Hartree Hamiltonian used in our calculations can be divided into three 
terms: 

H = H1e - H e e  + Hion-ion (2.9) 

where H I ,  is the one-electron tight-binding Hamiltonian, He, is the electron-electron 
interaction (subtracted from the one-electron Hamiltonian since this interaction is 
counted twice in Hie) and Hion-ion is the interaction between the ions. The one-electron 
Hamiltonian can still be written as: 

H1e = X I+) g i p   PI + X I ~P)  t i p , j u  ( j v I  (2.10) 
ib ipju 

where lip) is the ket for the orbital p at site i (we have employed a minimal tight-binding 
basis of five d orbitals per atom). In our calculations, we assume that the on-site gip and 
hopping t ip, jv energies depend only on the species of atom at the relevant sites and in the 
case of hopping parameters, on the relative positions of the sites. 
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The internal energy is thus given (as in I) by: 

- 2npxAXB{2[bnB(O, E ,  K )  - 6nA(o, E ,  K ) ]  [nB(u, E ,  K )  - n A ( 0 ,  E ,  K ) ]  

+ [bnA(o, E ,  K,  - 6nB(o, E ,  K)12> Ix gcc(r )V(r )r2  d r  (2.11) 
0 

where U and V(r)  describe the intra-atomic and interatomic Coulomb interactions, 
bn, = n, - np the charge transfer on metal i ,  gcc(r) being the partial pair correlation 
function of the reference system which represents the given atomic configuration. 
For interatomic Coulomb interactions, we adopt an interpolation formula V(r) = e*/ 
( r  + U-'e2) [ I l l .  

To calculate the electronic density of states N ( E ,  U ,  E ,  K ) ,  we use a Bethe Lattice 
type approximation introduced by Mayou et al, [ 121 which is similar for disordered alloys 
to the approximation applied by Falicov and coworkers [20] to describe short range 
order in crystalline alloys. For the d bands, the approximation that we use leads to a 
degeneracy of the five orbitals; it is due to the isotropy of the mean environment and 
implies that the five orbitals have the same density of states. We obtained the following 
equations of coupling between Green's functions of one orbital on A or B component: 

(2.12) 
1 

G ~ ( Z )  = z - E B  - p i B ~ B ( Z )  - p ; A ~ A ( Z )  

where p i B  is the average of the second moment of hybridisation between the electronic 
states of the two components. The different p$( i  = A or B, j = A or B) can be expressed 
in function of partial pair radial distribution function gij [12]: 

p$ = p 1% t$(r)gii(r)  d 3 r  
--r 

(2.13) 

p is the density. The distance dependence of the d-d hopping integrals is assumed to 
follow an exponential law t i  exp( -3(r - r o / r o ) )  [21], ro being the mean nearest neigh- 
bour distance and ti being related to the bandwidths of the component. The electronic 
density of states N ( E ,  U ,  E ,  K )  is given by: 

1 
n 6+0+ 

N ( E ,  0, E ,  K )  = - - lim lIm(xAGA(E + id) + xBGB(E + iS))i (2.14) 

The strategy of the calculation is thus as follows: in order to calculate the electronic 
density of state N ( E ,  U, E ,  K )  at arbitrary composition and arbitrary ( U ,  E ,  K )  par- 
ameters, we need only information about pure element properties which are the band- 
widths WA and WB and the on site energies E A  and E B .  After computations of the local 
densities of states, charge transfers between the two elements are determined and the 
resulting Coulomb interaction incorporated into the total energy using equation (2.4). 
The calculation of the local density of states is iterated until relative changes in the charge 
transfers are less than W4, at which electronic self-consistency has been achieved. 
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Table 1. Electronic tight-binding parameters of transition metals. 

d centre d bandwidth 
Element ( e v )  ( e v )  Nd 

Ni -4.9 3.8 
Y -1.8 6.6 
Ti -2.1 6.1 
Zr -2.2 7.1 
Nb -3.2 9.7 

In principle, the parameters of the reference system, a, E and K ,  are thus determined 
by minimising, at a given temperature, the alloy free energy expression given in equation 
(2.7). The ordering energy is then simply equal to &(a, E ,  K )  - E,(O, 0). 

However, as the repulsive energy is not included in our calculation, we cannot 
minimise the free energy as a function of a, the total energy becoming more negative 
without bound if adecreased. Thus we choose to fix aby  assuming that apackingfraction 
of q = 0.56 is representative of the alloy just above the glass-transition temperature. 
This is the value suggested by the extrapolated values of the excess entropies of the pure 
metals and the assumption that the total hard-sphere volume does not change on 
alloying. In I it has been shown that this value of packing fractions fits the Ni-Ti and Ni- 
Zr alloys at all concentrations. Let us recall that in this approach, metallic glass has been 
considered as a supercooled liquid. It has been shown by Hafner and Pasturel [lo] that 
apart from the form of the second peak of S,,(q) which is absent in the supercooled 
liquid, the result of the variational calculation was in good agreement with the partial 
structure factors of glasses calculated with a molecular dynamics quench technique. 

3. Results 

Before we present our results in detail, we discuss the origin of the input parameters 
used in our calculations. Using a tight-binding Hamiltonian and a real space method to 
calculate the electronic density of states gives the possibility to perform total energy 
calculations for complex situations like amorphous alloys but however requires a para- 
metrisation of this situation. The tight-binding Hartree Hamiltonian that we have used 
includes both intersite and intrasite Coulomb interactions and incorporates the essential 
features required for a self-consistent treatment of charge transfer. The main tight- 
binding parameters are the on site and hopping energies. 

For the intrinsic on site energies, which are the starting values for our self-consistent 
treatment of charge transfer, we have used atomic eigenvalues as suggested by Robbins 
and Falicov [22, 231. These eigenvalues were calculated [22, 231 for a relativistic atom 
with one s electron and all d orbitals equally occupied, electronic configuration which is 
close to the ~ ~ , ~ d ~ -  1.3 c onfiguration predicted by band structure calculations [24]. 

The hopping integrals are obtained using a Slater-Koster parametrisation scheme 
[25]. The hopping energies between like species were evaluated from Harrison [21] who 
has fitted the bandwidths (W,) of the pure metals predicted by Andersen and Jepsen 
[26]. The expression of the Slater-Koster parameter between unlike atoms can be 
derived using Shiba’s approximation [27]. 
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The last electronic input parameter is the intra-atomic Coulomb interaction. Theor- 
etical estimates place its value between 2 and 3 eV [28]. In our calculations we have 
taken U = 3 eV for all the elements. Let us mention that another value of Uin the given 
range does not charge our results due to the self-consistent treatment of the charge 
transfer. 

At this point of discussion it is important to recall that although the microscopic 
theory we use is not ab initio, it only requires the results of band structure calculations 
for the pure elements which are generally available [21,24]. On the other side, such an 
approach has been already developed to study stability of compounds or solid solutions, 
usingthesamesetofintrinsictight-bindingparameters [22,23,29,32]. Agoodagreement 
between energies of formation of compounds or solid solutions and the experimental 
results [33] or results obtained from ab initio calculations [34] justifies a posteriori the 
use of this tight-binding parametrisation to obtain semi-quantitative results and we think 
that it can be extended to amorphous alloys without problem. 

Concerning the other parameters, we have already discussed the value of the packing 
fraction. There remain the temperature T at which the free energy minimisation has 
been made and the density of alloy. The latter is obtained by a linear interpolation 
between the densities of the pure metals which has been confirmed by experiments of 
Altounian and Strom-Olsen [35]. For all alloys, the calculations have been performed 
at T = 700 K; this is within about 100 K of the glass temperature of these amorphous 
alloys [36]. 

To conclude this discussion, let us mention that these last parameters, 0, 17, and T 
can be varied within a range of 15% without affecting the significant features of our 
results. 

3.1. Ni,Zrl -, alloys 

We begin by studying Ni,Zr, -, amorphous alloys which provide the opportunity to study 
the CSRO as a function of composition. Several accurate determinations of the partial 
structure factors using neutron and x-ray diffraction have been made in this system. 
Indeed CSRO has been found important for Ni65Zr35 alloy [4], weaker for NiSOZrSO alloys 
[3], and practically zero for Ni35Zr65 alloys [2]. In I we have shown that the calculated 
partial structure factors S,,(q) are in good agreement with the experimental ones and 
were able to reproduce the strong evolution of S,,(q) as a function of composition. In 
this work, we focus our attention on the thermodynamic excess functions. In figure 1 we 
present the calculated ordering energies and ordering entropies for NiZr system. Once 
more the evolution of ordering energies and ordering entropies with respect to com- 
position is very peculiar, these two quantities being maximum for xNI = 0.7. 

Let us now look at the thermodynamic functions and more particularly the heats of 
formation, AHf.  From this point of view, the NiZr system is interesting since exper- 
imental determinations of the heats of formation have been performed for a number of 
Ni,Zr, --x alloys [37]. In figure 2 we present our calculated heats of formation of amorph- 
ous alloys for the equilibrium ordered state and for the disordered state. The agreement 
between experimental and calculated results is very satisfying, especially when we take 
into account ordering energy. We can also conclude from the evolution of CSRO as a 
function of composition that the degree to which CSRO occurs will be the larger, the more 
negative the corresponding value of AH,. 

The second point is to compare these values to the ones of crystalline alloys. As can 
be seen from figure 2, amorphous alloys are characterised by formation enthalpies which 
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Figure 2. Calculated heats of formation in the 
NiZr system: -.-, without CSRO; A ,  with the 
equilibrium ordering energy; X , experimental 

0.5 1 .o 
XN , 

Figure 1. Ordering energies and ordering entrop- 
ies of amorphous Ni,Zr, - - x  alloys. 

adopt less negative values than those of crystalline alloys of similar composition (in fact, 
the difference between the two enthalpy terms is the crystallisation enthalpy AHcr [ 3 7 ] ) .  
If CSRO occurs, amorphous alloys are stabilised since the absolute value of the ordering 
energy increases and consequently the enthalpy value found for the amorphous alloys 
tends to be close to the value expected for the crystalline material. 
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I , , , ~ , , , I Figure3. Evolutionofthepartialstructurefactors 
0 2 4 6 S,,(q) as a function of the alloying partner (0, 

[a-’)  experimental; -, calculated). 

In the above discussion, we have implicitly admitted that a glassy alloy was formed 
but what are the consequences of CSRO on the metallic glass forming ability? As shown 
above, our model makes it possible to display the influence of electronic effects on the 
stabilisation of the disordered phase by the occurrence of CSRO or,  in other words, by 
the occurrence of a strong chemical bonding between dissimilar atoms. However, our 
electronic factors, i.e. difference between the atomic energy levels of the d bands of the 
constituents, difference of their bandwidths and valence electron composition, are 
structure-alloy independent factors and our model points out the similarity of the 
chemical bonding in crystalline, amorphous and liquid alloys. The study of the NiZr 
phase diagram shows that stable compounds occur in the Ni rich side, in the region for 
which one finds a stronger CSRO parameter. Consequently, a tendency to short-range 
order in the liquid enhances the glass-forming ability only if this type of ordering is 
incompatible with any stable crystalline alloy. 

3.2. NixTM, - x  alloys 

In this part, we have chosen to study the evolution of CSRO as a function of the alloying 
partner. We have performed CSRO calculations for Ni40Ti60, Ni33Y67 and Ni40Nb60 
amorphous alloy [l] the Scc(q) partial structure factor has been derived from the com- 
bination of x-ray and neutron diffraction experiments. For Ni33Y67 and Ni40Nb60 
amorphous alloys, the Sc,(q) factors have been evaluated by neutron diffraction using 
isotopic substitution. These alloys have roughly the same composition than the one of 
Ni35Zr65 alloys and thus allow us to study the evolution of CSRO as a function of alloying 
partner. In figure 3, we can see that the variationally determined partial static structure 
factors compare well with those determined from isotope substitution experiments. In 
order to compare the chemical ordering in these different glasses, we report in table 
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Table 2. Ordering energies and Warren-Cowley parameters for Ni,TM, - - x  alloys 

~ 

Ni,,Y,, -0.0176 -0.15 

Ni3SZrbi -0.007 -0.05 
N i m T l ~  -0.0126 -0.1 

Ni4oNbn 0 0 

Figure 4. Evolution of the density of electronic 
states as a function of the alloying partner. 

2 the calculated values of ordering energies and Warren-Cowley short range order 
parameter [38]. As seen in table 2,  Ni33Y67 glass exhibits the strongest chemical ordering 
effect. When we compare the chemical interactions between Ni and other metals of the 
same column of the periodic table, it turns out that the tendency towards strong bonding 
interactions between Ni and d elements decreases going from 3d to 4d elements (see 
Ni40Ti,, and Ni36Zr65). Moreover, from the Warren Cowley parameters for Ni33Y67, 
Ni36Zr64 and Ni40Nb60, the chemical ordering also decreases as the MT element goes 
towards the right-hand side of the 4d row of the PeriodicTable. In I a connection between 
the position of the Fermi level in the electronic densities of states of Ni,Zr, -, alloys and 
the occurrence of CSRO has been proposed. 

In figure 4 we present the densities of states of the Ni,MT1 --x alloys and its evolution 
as a function of the MT element. As for Ni65Zr35 alloy, we can see that Ni33Y67 alloy, 
which displays an important chemical ordering, is characterised by a Fermi level residing 
in a well-defined pseudogap. On the other hand, it is not the case for Ni40Nb60 alloy 
which has no chemical ordering. For this series of alloys, the same conclusion about the 
importance of the position of EF is reached. 

This general trend allows us to propose a discussion on the microscopic origin of 
CSRO in terms of elemental electronic characteristics (on site energy and bandwidth). 
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4. Discussion 

The purpose of this section is to present a discussion of the microscopic origin of CSRO. 
We show that the variation of energy with the atomic positions can be decomposed into 
kinetic and ionic parts and we explain qualitatively their behaviour. Thus one can 
understand the main features of the results present above. 

We recall that in our approach, we take only into account the variation of the bonding 
energy Ebond with CSRO (equation (2.8)). The energy of the fundamental electronic state 
contains two contributions: 

ET = ( H c )  + > r ~ )  (4.1) 

(H,) is the average value of the kinetic energy (second term in the right hand side of 
equation 2.10) and EI is the average value of the Hamiltonian describing the orbital 
energy and the interaction between the charges of the system. EI(n,,, r,) is a function of 
the charges n,, of the orbitals lip) and of the positions r, of atoms i. 

Within the Hartree approximation which is used here one has the one electron 
Hamiltonian (2.10) 

is the energy of the atomic orbital lip) renormalised by the interaction with electrons 
and ions. When charge transfers are self-consistent one has 

where the partial derivative with respect to nip indicates that the other variables nj, ( j p  f 
i p )  and ri are constant. The total energy of the system can be written using (4.1) and 
( 4 4  

from (2.9), we see that 

When the positions r, of the atoms vary (in the present study this is described by a 
variation of the Warren-Cowley parameter) the hopping integrals t,, on H,  and the 
interaction between the charges of different atoms given by V(r) (equation 2.11) vary. 
Thus the selfconsistent charges n and energy levels E,, vary also since the Hamiltonian 
is modified. In paper I ,  the variation of energy AET due to the occurrence of CSRO was 
decomposed in A(Hle) and A(H,on-,on - Hee).  Here we use another decomposition in 
kinetic AEl and ionic AEZ term which are more physical and easier to analyse as we 
show below. 

In our definition AEl is the variation of the sum of one electron energies (Hie) which 
one would obtain by taking into account the variation of the kinetic Hamiltonian H,  but 
not that of E?;. This contribution is the only one considered by Bieber et a1 [8, 391 in 
binary substitutional transition metal alloys. More precisely we consider an intermediate 
state for the one electron tight-binding Hamiltonian Hi",' with the kinetic part H ,  equal 

"t 
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to that of the system with order, and the on site energy e< equal to that of the system 
without order. 

A(H1e) = AI(H1e) + A2(Hle) (4 * 6) 

AE1 = AI(H1e) (4.7) 

A I  denotes the variation of the sum of one electron energy between the intermediate 
state and the state without order and A 2  denotes the variation between the state with 
order and the intermediate state. 

(4. 8a) 

(4.8b) 

AE2 is defined as the difference AET - A E l .  The interesting point is that, with error 
of only second order in the variation of the selfconsistent charges nip and orbital energies 
e;, A E 2  has a simple expression. Indeed 

A E 2  = A 2 ( H l e )  + AEI  - A (2 n i , e 3 ) .  (4.9) 
1, / 

Where A 2 ( H I e )  is defined above. Using Hellmann-Feynman theorem one gets to 
first order in d e ?  

(4.10) 

In equation (4.7) the charges nip are those calculated for the intermediate Ham- 
Thus iltonian and differ from those of the state without order by term of order d 

within error of order two in d e% we get 

~ 2 ( ~ 1 e >  = C nip d * 

ip 

Where nip is the charge calculated for the system without order. 
Putting in (4.6) we obtain to first order in d e7 and d n,, 

(4.11) 

(4.12) 

since eilr is given by (4.3). 
Equation (4.12) shows that the variations of the selfconsistent charges nig and ener- 

gies e t  cancel to first order. This is quite analogous to the local force theorem proved 
by Andersen [40] in the density functional formalism. We show below that the approxi- 
mation given by (4.12) for A E 2  is always very good for the systems studied here. 

Thus, to first order, A E 2  is the variation of the interaction energy obtained by moving 
the atoms with a fixed charge n,, on each orbital. We see that AE2 is an ioniccontribution 
to the variationof the total energy AET. Finallywe note that in the GPM theory, developed 
by Gautier and coworkers, the kinetic contribution A E l  is decomposed into a sum of 
pair interactions: this decomposition is also valid for AE2 although this contribution is 
not taken into account in the GPM. 

We have calculated the contributions A E l  (kinetic) and AE2 (as approximated by 
4.12) for Ni40Ti60 and NixZrl-x ( x  = 0.35, 0.5, 0.65) in their equilibrium configuration. 
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N ~ J o T ~ ~ o  -0.0126 - 0.0109 -0.0015 -0.0407 0.0281 
Ni3Szr65 - 0.007 1 - 0.0068 -0.0002 -0.0298 0.0227 
NisnZrso -0.0400 - 0.0347 -0.0033 - 0.0635 0.0235 
Ni,sZr35 -0.115 - 0.0972 -0.0118 -0.0151 - 0.0999 

Table 3 shows that, for Ni40Ti60, we make a very small error in approximating A E 2  by 
the formula (4.12) since the sum A E ,  + AE2 is nearly equal to the exact ordering energy 
AEord. Calculations show that it is also true for the other alloys presented in this paper, 
and thus AE2 = AEord - AEl  can be considered as the ioniccontribution to the ordering 
energy given by (4.12). In table 3, we have also indicated the decomposition of AEord in 
A(H,,) and A(Hion-ion - Hee).  We see that both terms are important, as compared to 
AEord, but tend to cancel each other, contrary to A E l  (kinetic) and AEZ (ionic) which 
contribute with the same sign and are smaller than AEord. 

and NixZrl-x, AEl is always 
the most important contribution to AEord. This is due to the fact that the charge transfer 
in the binary transition metals alloys is weak and thus the ionic contribution A E Z  is also 
weak (for instance, charge transfer on Ni atom is equal to 0.14 in &Ti60 alloy). 

Before analysing the behaviour of AEl  and AE2, it is important to note that those 
terms vary roughly linearly with CSRO. This means that they would, alone, lead to a 
maximum CSRO. Thus one sees that the entropy is important in giving a partial CSRO for 
which its derivative compensates that of the energy. 

The electrostatic energy of the charges carried by the atoms is the sum of two terms. 
The first one, positive, is due to the interaction between atoms of the same species and 
the second one, negative, is due to the interaction between atoms of different species. 
The CSRO diminishes the number of homoatomic nearest-neighbour pairs and increases 
the number of heteroatomic pairs, thus the ionic contribution AE2 is the sum of two 
negative terms and always favours heteroatomic coordination. 

However, we have seen from table 3 that AEl is the most important term and we 
discuss now its behaviour as a function of the band filling. In figure 5 ,  we represent the 
evolution of A E ,  (calculated for Warren-Cowley parameter owc = -0.1) as a function 
of the number of valence electrons, and for a DOS taken as the one of Ni50Zr50 amorphous 
alloy. The energy AEl has two zeros as a function of the band filling as it is well-known. 
Generally, this result is explained through an argument based on the moments of the 
DOS, but it can be also understood through the following physical argument. As already 
mentioned above, the calculated DOS of binary transition metals amorphous alloys is 
characterised by a two-peaked structure and in each peak the DOS is largely dominated 
by the contribution of one species since the mixing is weak between the two bands. The 
effect of CSRO is to diminish the number of homoatomic pairs and to increase the number 
of heteroatomic pairs. The consequences on the shape of the alloy DOS is that CSRO 
diminishes the bandwidths of the two subbands but increases their coupling which is 
important between the two peaks. Thus if the band filling is such that the Fermi level is 
in one of the two peaks of the DOS the ordered state is energetically unfavourable since 
the bandwidths are reduced. In contrast, if the Fermi level resides between the two 

If we compare AE, and AE2, we see that for 
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Figure 5. Evolution of the ordering energy 
function of the band filling. 

as a 

peaks, the band energy is sensitive to the increase of the coupling between the two 
subbands and the CSRO is energetically more favourable. 

We have understood why the occurrence of a pseudogap in the DOS and the location 
of the Fermi level in this pseudogap are necessary to obtain CSRO in amorphous transition 
metal alloys. The problem is now to know if an alloy does or does not develop a 
pseudogap in its density of states. In a tight-binding formalism, the occurrence of a 
pseudogap depends on the diagonal disorder, i.e. the difference between the centres of 
gravity of the d bands, and on the off-diagonal disorder, defined by the difference of the 
partners’ bandwidths or the difference of the partners’ d-d hopping integrals. Thus we 
have studied the variation of the ordering energy with the above two parameters. The 
evolution of ordering energy as a function of the increasing separation of the two bands 
is shown in figure 6(a) for the peculiar case of amorphous NiZr alloy; we start with the 
electronic tight-binding parameters of the alloy and only the separation of the d bands 
of the constituents, A E ,  is modified. We see that the ordering energy becomes more 
important when A E  increases. In the same way, if we modify the off-diagonal disorder 
which is important for Ni50Zr50 alloy, a decreasing of this quantity tends to increase the 
ordering energy as it can be seen in figure 6(b). Thus from the electronic tight-binding 
parameters of table 1, we now understand qualitatively why CSRO is more important for 
Ni40Ti60 alloy than for Ni&r64 alloy, since the bandwidth of the early transition metal 
increases when we go down through a column; in the same way, if we enter a series, for 
instance from Y to Nb. CSRO diminishes because A E  decreases. 

5. Conclusion 

We have presented calculations of CSRO in amorphous alloys of transition metals. 
Our method, based on a thermodynamic variational method, refers to thermodynamic 
equilibrium configurations but in agreement with earlier computer-simulation studies 
on simple metal alloys we find that calculations for the supercooled liquid phase yield 
useful information on the CSRO in the glassy phase. 



On the microscopic origin of chemical short-range order 9699 

Figure 6. Evolution of the ordering energy as a 
function of ( a )  the difference of the partners’ d-d 
hopping integrals and ( b )  the difference of the 
partners’ d band centres. 

We have shown that CSRO varies either with the composition for a given system, or 
with alloying partner for a given composition, in agreement with the experimental 
results. Using Hellmann-Feynman theorem, we show that the occurrence of CSRO results 
from two energy contributions; the first one is an electrostatic energy which always 
favours CSRO. In the studied alloys, it is weak due to a negligible charge transfer. The 
second contribution comes from the distortion of the electronic band with CSRO; the sign 
of this contribution depends crucially on the position of the Fermi level in the density of 
the electronic states. The CSRO is favoured by the occurrence of a pseudogap in the 
density of states and the location of the Fermi level in it. We have shown that the 
existence of the pseudogap can be correlated with the tight-binding parameters which are 
the difference between the d-band centres and the difference between the bandwidths. 
According to this analysis, we expect to find CSRO for transition metal alloys which 
respect at least the two following conditions: (i) the two alloying partners must be an 
early transition metal and a late transition metal-condition to obtain a pseudogap in the 
density of electronic states (let us mention that it is also a condition to obtain amorphous 
alloys by quenching method); (ii) the alloying composition must be rich in late transition 
metal condition to obtain the Fermi level in the pseudogap. 
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